My Proofs of the Laws of Logarithms

Albert Dorador

July 24, 2016

This document presents step-by-step proofs of the Laws of Logs by a non-mathematician, using a variant of Sir Isaac Newton's proof template, which I feel is just as elegant-looking as convenient.

Constructio

Consider any arbitrary a $\in \mathbb{R}^{+} \backslash\{1\}$, and arbitrary $x, y \in \mathbb{R}^{+}$.
It is known that $\operatorname{Domain}\left(a^{x}\right)=\mathbb{R}$, and that Range $\left(a^{x}\right)=\mathbb{R}^{+}$.
In addition, it is known that Range $\left(\log _{a} x\right)=\mathbb{R}$, and $\operatorname{Domain}\left(\log _{a} x\right)=\mathbb{R}^{+}$.
Therefore, $a^{\log _{a} x}$, as well as $a^{\log _{a} y}$ exist.
Propositio

$$
\log _{a} x+\log _{a} y=\log _{a}(x y)
$$

Demonstratio

Consider the quantity $a^{\log _{a} x} \cdot a^{\log _{a} y}$.
By a power law, we know that

$$
a^{\log _{a} x} \cdot a^{\log _{a} y}=a^{\log _{a} x+\log _{a} y}
$$

But, by the definition of the exponential and logarithmic functions, we know that

$$
a^{\log _{a} x} \cdot a^{\log _{a} y}=x y
$$

Therefore,

$$
a^{\log _{a} x+\log _{a} y}=x y
$$

Since $a^{\log _{a} x+\log _{a} y} \in \mathbb{R}^{+}$(and $x y$ too, naturally), we can apply the logarithmic function (base a) to both sides of the previous equation

$$
\log _{a}\left(a^{\log _{a} x+\log _{a} y}\right)=\log _{a}(x y)
$$

But, again, by the definition of the exponential and logarithmic functions, we have

$$
\log _{a} x+\log _{a} y=\log _{a}(x y)
$$

Propositio

$$
\log _{a} x-\log _{a} y=\log _{a}\left(\frac{x}{y}\right)
$$

Demonstratio
Consider the quantity $\frac{a^{\log _{a} x}}{a^{\log _{a} y}}$.
By a power law, we know that

$$
\frac{a^{\log _{a} x}}{a^{\log _{a} y}}=a^{\log _{a} x-\log _{a} y}
$$

But, by the definition of the exponential and logarithmic functions, we know that

$$
\frac{a^{\log _{a} x}}{a^{\log _{a} y}}=\frac{x}{y}
$$

Therefore,

$$
a^{\log _{a} x-\log _{a} y}=\frac{x}{y}
$$

Since $a^{\log _{a} x-\log _{a} y} \in \mathbb{R}^{+}$(and $\frac{x}{y}$ too, naturally), we can apply the logarithmic function (base a) to both sides of the previous equation

$$
\log _{a}\left(a^{\log _{a} x-\log _{a} y}\right)=\log _{a}\left(\frac{x}{y}\right)
$$

But, again, by the definition of the exponential and logarithmic functions, we have

$$
\log _{a} x-\log _{a} y=\log _{a}\left(\frac{x}{y}\right)
$$

Q.E.D.
$\underline{\text { Propositio }}$

$$
y \log _{a} x=\log _{a}\left(x^{y}\right)
$$

Demonstratio
Consider the quantity $\left(a^{\log _{a} x}\right)^{y}$.
By a power law, we know that

$$
\left(a^{\log _{a} x}\right)^{y}=a^{y \log _{a} x}
$$

But, by the definition of the exponential and logarithmic functions, we know that

$$
\left(a^{\log _{a} x}\right)^{y}=x^{y}
$$

Therefore,

$$
a^{y \log _{a} x}=x^{y}
$$

Since $a^{y \log _{a} x} \in \mathbb{R}^{+}$(and x^{y} too, naturally), we can apply the logarithmic function (base a) to both sides of the previous equation

$$
\log _{a}\left(a^{y \log _{a} x}\right)=\log _{a}\left(x^{y}\right)
$$

But, again, by the definition of the exponential and logarithmic functions, we have

$$
y \log _{a} x=\log _{a}\left(x^{y}\right)
$$

Q.E.D.

