My Proofs of the Laws of Logarithms

Albert Dorador

July 24, 2016

This document presents step-by-step proofs of the Laws of Logs by a non-mathematician, using a variant of Sir Isaac Newton's proof template, which I feel is just as elegant-looking as convenient.

Constructio

Consider any arbitrary $a \in \mathbb{R}^+ \setminus \{1\}$, and arbitrary $x, y \in \mathbb{R}^+$. It is known that $Domain(a^x) = \mathbb{R}$, and that $Range(a^x) = \mathbb{R}^+$. In addition, it is known that $Range(log_a x) = \mathbb{R}$, and $Domain(log_a x) = \mathbb{R}^+$. Therefore, $a^{log_a x}$, as well as $a^{log_a y}$ exist.

Propositio

$$log_a x + log_a y = log_a(xy)$$

<u>Demonstratio</u> Consider the quantity $a^{\log_a x} \cdot a^{\log_a y}$. By a power law, we know that

 $a^{\log_a x} \cdot a^{\log_a y} = a^{\log_a x + \log_a y}$

But, by the definition of the exponential and logarithmic functions, we know that

$$a^{\log_a x} \cdot a^{\log_a y} = xy$$

Therefore,

$$a^{\log_a x + \log_a y} = xy$$

Since $a^{\log_a x + \log_a y} \in \mathbb{R}^+$ (and xy too, naturally), we can apply the logarithmic function (base a) to both sides of the previous equation

$$\log_a\left(a^{\log_a x + \log_a y}\right) = \log_a(xy)$$

But, again, by the definition of the exponential and logarithmic functions, we have

$$log_a x + log_a y = log_a(xy)$$

Propositio

$$\log_a x - \log_a y = \log_a \left(\frac{x}{y}\right)$$

Demonstratio

 $\overline{\text{Consider the quantity }} \frac{a^{\log_a x}}{a^{\log_a y}}.$

By a power law, we know that

$$\frac{a^{\log_a x}}{a^{\log_a y}} = a^{\log_a x - \log_a y}$$

But, by the definition of the exponential and logarithmic functions, we know that

$$\frac{a^{\log_a x}}{a^{\log_a y}} = \frac{x}{y}$$

Therefore,

$$a^{\log_a x - \log_a y} = \frac{x}{y}$$

Since $a^{\log_a x - \log_a y} \in \mathbb{R}^+$ (and $\frac{x}{y}$ too, naturally), we can apply the logarithmic function (base a) to both sides of the previous equation

$$\log_a \left(a^{\log_a x - \log_a y} \right) = \log_a \left(\frac{x}{y} \right)$$

But, again, by the definition of the exponential and logarithmic functions, we have

$$\log_a x - \log_a y = \log_a \left(\frac{x}{y}\right)$$

Q.E.D.

Propositio

$$ylog_a x = log_a \left(x^y \right)$$

 $\frac{\text{Demonstratio}}{\text{Consider the quantity }} \left(a^{\log_a x}\right)^y.$

By a power law, we know that

$$\left(a^{\log_a x}\right)^y = a^{y\log_a x}$$

But, by the definition of the exponential and logarithmic functions, we know that

$$\left(a^{\log_a x}\right)^y = x^y$$

Therefore,

$$a^{ylog_ax} = x^y$$

Since $a^{y \log_a x} \in \mathbb{R}^+$ (and x^y too, naturally), we can apply the logarithmic function (base a) to both sides of the previous equation

$$\log_a\left(a^{y\log_a x}\right) = \log_a(x^y)$$

But, again, by the definition of the exponential and logarithmic functions, we have

$$ylog_a x = log_a (x^y)$$

Q.E.D.